4.1.9智能分析功能:软件内置典型故障特征的数据库,可与监测数据进行比对,通过信号波形、时间长度和幅值等特征值,诊断分析故障类型;也可添加新监测数据,方便后期横向、纵向比较;可将同一厂家同一型号的正常监测数据导入保存,便于对该厂家、型号的变压器监测数据曲线进行比对分析。4.1.10具有报表分析功能,自动计算并保存重合度、动作时间、能量分布、电流最大值、电流平均值、绕组及铁芯振动峰值频率、总谐波畸变率、基频能量比、互相关系数等特征参量,并生成分析报表。4.2智慧化功能4.2.1具备边缘计算能力,就地采集并处理声纹振动信号及驱动电机电流信号,完成OLTC信号包络、ATF图谱等分析,完成绕组及铁芯振动信号频谱分析及参数计算,根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果。GZAFV-01型声纹振动监测系统(变压器、电抗器)专业设计和性能优化。杭州振动监测现场服务

◆可在不同的监测结果之间进行比较区分正常与异常。◆具有时间触发和电流触发功能,可手动选择信号触发方式。◆具有AFV和电流信号历史数据变化趋势曲线功能。◆具有阈值超限告警功能,软件自动分析信号增长趋势,实现自动阈值告警,也可手动设置阈值告警的限值,支持短信阈值告警。◆系统软件内置各种故障的特征数据库,可与监测的数据进行比对,通过波形形状、时间长度和幅值,诊断分析出故障类型;也可将新测得的数据作为诊断卡的一部份,方便后期与同一开关作纵向比对分析。◆具有报表分析功能:可针对不同包络曲线能够进行动作曲线的重合度、抖动度、延迟/制动时间、高/低频振动最大值、电流最大值/平均值等参数计算并生成分析报表。◆可灵活选择图谱各点的幅值数据并显示,便于分析图谱的变化特征。◆具有标准图谱库功能,系统软件可将同一厂家同一型号的正常监测数据导入保存,便于对该厂家、型号的OLTC数据曲线作横向比对分析。◆机械特性监测包括:档位、动作次数、振动状态、电机电流、动作时间等。◆对监测数据进行融合分析与评价,判断OLTC运行状态,阈值告警输出。杭州振动监测试验判断GZAFV-01型声纹振动监测系统的基本功能。

4.2.2具备实物ID管理功能,提供OLTC、绕组及铁芯运行状态信息链接入口,可扫码读取设备在线监测历史数据及趋势。通过扫码或RFID识别设备,读取设备ID信息,通过站内网络(4G/5G/WIFI)传输给云端服务器,向服务器请求该设备的详细信息,以及详细的运行状态,测试信息等。4.2.3根据各时频信号互相关系数、能量分布曲线特征参量(互相关系数、最大值、平均值、峰度、偏度)、ATF图谱特征参量(六等分区间均值)、总谐波畸变率、基频信号能量比等状态量,采用深度学习算法,自动判断变压器运行状态及机械故障类型。
4.2.4结合变压器的带电监测、智能巡检以及其他在线监测状态量,进行数据的多参量融合分析,形成基于多源数据的故障预警机制,多参量融合分析不仅提高了识别故障的准确性,而且还能**降低因单个参量判别故障带来的误报。例如,对于变压器疑似问题地诊断可结合负荷、损耗、绕组机械振动信号、油温、以及历史电流电压情况分析,在监测到变压器地声纹振动频谱时,GZAFV-01系统的操控及监测数据分析系统可以自动去查询变压器地历史电流和电压信号,如果发现在某段时期确实有大电流冲击,可给出预警:变压器可能存在绕组变形地异常。
七、技术交流与投运业绩GZAFV-06T型便携式变压器声纹振动监测与诊断系统已成功应用于智能变电站、智慧变电站及数字化变电站等示范项目(已经投运的廊坊特高压站、济南商西站、青岛顾家站和世纪站、泰安天平站等),实现大型电力设备的全振动在线监测与故障诊断,有效的提高电力设备运行的可靠性。同时,我公司积极与各科研院所(南网电科院、广东电科院广西电科院、冀北电科院、山东电科院、江苏电科院、浙江电科院等)、供电公司(冀北、山东、山西、江苏、宁夏等的省检)、变压器制造商(山东电力设备制造厂、江苏华鹏变压器厂、南通的韩国晓星变压器厂、杭州钱江变压器厂等)、OLTC制造商(上海华明、贵州长征、德国MR等)、变电站综合监测系统平台承建商(国网智能、南瑞科技、长园深瑞等)开展合作,不断丰富各型变压器的声纹振动样本数据库。GZAFV-01型声纹振动监测与诊断系统 。

能量分布曲线
基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。
时频能量分布矩阵(ATF图谱)
获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。 杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的多功能集成。杭州智能振动监测必要性
杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的智能化设计。杭州振动监测现场服务
3.1.2功能特点Ø采用加速度传感器监测GIS本体振动信号,监测主机/IED具备多个传感测点连续实时或周期性自动监测功能;Ø具备诊断分析功能,监测主机/IED可向综合分析单元传送标准化数据、分析结果和预警信息,并接收下传控制命令;Ø具有比对分析功能,可将测量数据与标准信号、历史测量信号进行比对分析;Ø具有断电不丢失存储数据、复电自启动、自复位的功能,可连续监测、存储及导出1年以上数据;Ø具备振动信号时域波形展示、频谱分析(基频为100Hz)功能,可自动提取峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量,作为GIS运行状态分析参量,且用户可定义设置报警阈值。下页图3为正常状态与异常状态时,GIS本体的振动信号的时域波形及频域谱图。杭州振动监测现场服务
文章来源地址: http://yiqiyibiao.chanpin818.com/dgyqyb/qtdgyqyb/deta_26552897.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。