(4)时频能量分布矩阵(ATF图谱)获取声纹振动信号时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态对比。下图13为正常状态下的声纹振动信号的时频能量矩阵。图13声纹振动信号的时频能量矩阵3.3.2绕组及铁芯运行状态分析下图14(a)为变压器运行时的绕组及铁芯声纹振动的时域信号。为更直观的分析绕组及铁芯运行状态,采用频域法分析声纹振动信号,实现变压器在线运行状态下的监测与诊断。杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的多功能集成。杭州高压开关振动监测工作

(3)频谱互相关系数(r):正常状态与实时测得振动信号频谱图之间的相似度,计算公式如下:r=i=0N-1[Xi-X][Yi-Y]i=0N-1[Xi-X]2i=0N-1[Yi-Y]2其中Xi和Yi分别为正常状态与实时测得振动信号的频域分布,X和Y为对应信号的平均值,互相关系数范围为0~1。正常运行时,相关系数应接近于1;存在故障时,信号频率分布发生改变,互相关系数减小。(4)频率复杂度(FCA):频率复杂度的定义与信息熵类似,频率成分越复杂,对应的频率复杂度特征量越大,计算公式如下:FCA=-fpfln(pf)pf=EfEf=100Hz+Ef=200Hz+⋯+Ef=200Hz其中f=100,200,…,2000Hz,Ef为对应频率信号能量,pf为振动频率为f的谐波比重值。(5)振动平稳性(DET):振动平稳性以理解为对振动信号周期性的一种衡量,如果振动平稳性较差,那么作为振动主要激励源的部件出现机械稳定性异常的可能性较大,其定义的公式如下:DET=l=lminNlP(l)l=1NlP(l)杭州高压开关振动监测工作杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的模块化设计。

(2)重合度对比如下图10所示,包络分析后可快速实现历史信号重合度对比分析,更直观的判断OLTC运行状态。为量化信号重合度对比,系统引入相关系数的计算。当实时采集信号包络曲线与正常状态包络曲线相关系数接近1时,实时采集的信号接近正常运行状态;当相关系数接近0时,OLTC可能存在故障。图10信号重合度分析(3)能量分布曲线基于小波变换的声纹振动信号多分辨率分析的结果如下图11所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。对比正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。图12为正常状态与异常状态声纹振动信号能量分布曲线对比。
3.2系统结构GZAFV-06型便携式声纹振动监测与诊断系统由IEPE式振动(加速度)传感器、声纹(自由场)传感器、驱动电机电流传感器、数据采集装置、云服务器(采用B/S结构)、通讯子系统及供电系统构成,本系统的框架示意图如下图3所示。3.2.1传感器GZAFV-06型便携式声纹振动监测与诊断系统传感层由IEPE式振动(加速度)传感器、声纹(自由场)传感器及驱动电机电流传感器,传感器外观及参数如下表1所示。振动传感器集成电荷放大器,将声纹振动信号转换成与之成正比的电压信号;自由场传感器是一种利用电容量变化而引起声电转换作用的传感器;电流传感器采用微型卡扣结构,便于现场安装,节省空间。传感器安装示意图如下图4所示,变压器声纹振动监测与诊断系统所有传感器单元与变压器本体无电气连接,安装简单方便,适用于在线监测与诊断或带电监测与诊断。GZAFV-06T型便携式变压器声纹振动 监测与诊断系统传感器。

四、功能特点4.1基本功能4.1.1支持多通道信号同步实时的采集、显示及分析;4.1.2具有时间触发和电流触发功能,可手动选择信号触发方式;4.1.3可将任意两次监测的图谱进行相似度分析,并自动计算图谱的重合度;4.1.4具有先进的能量谱分析功能,并能自动识别能量谱比较大的高低频能量频率;4.1.5独有的信号处理功能,生成振动信号及声纹信号ATF图(**算法,**所有),更直观、更便捷分析OLTC、绕组和铁芯的运行状态;4.1.6具有绕组和铁芯的声纹振动信号频谱分析功能,自动识别峰值频率偏移及谐波增量,实时分析绕组及铁芯运行状态;4.1.7振动、声纹和电流信号的历史数据曲线趋势功能;杭州国洲电力科技有限公司振动声学指纹在线监测技术的技术突破点。杭州高压开关振动监测工作
杭州国洲电力科技有限公司振动声学指纹在线监测功能的故障诊断能力。杭州高压开关振动监测工作
主要意义如下:6.1采用带电监测/在线监测方式,不影响主设备正常运行,降低了电网风险;6.2减少了人员进站检查的运维成本;6.3监测方式与设备无电气连接,具有安全、可靠、安装方便等优点;6.4采用独特的时域分析、包络分析、重合度对比、时频矩阵分析等方法,并提峰值频率、总谐波畸变率、频谱互相关系数、频率复杂度、振动平稳性、能量相似度、振动相关性等特征参量等特征参量,提高在线监测的准确度。6.5内置基于海量样本的大数据和人工智能技术而建立的**分析型数据库,可真实反应设备运行状态,有效诊断绕组变形、机械卡涩、触头磨损、电动机构拒动等故障程度和类型;6.6符合智慧变电站建设原则,本系统的IED具备边缘计算能力,就地采集并处理声纹振动及融合其它信号,完成分析计算后根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果。杭州高压开关振动监测工作
文章来源地址: http://yiqiyibiao.chanpin818.com/dgyqyb/qtdgyqyb/deta_26357604.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。