高光子密度带来的高能量容易损伤细胞,所以双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲达到最大值所持续的周期只有十万亿分之一秒,而其频率可以达到80至100兆赫,这样即能达到双光子激发的高光子密度要求,又能不损伤细胞,使扫描能更好地进行。双光子显微镜在各领域研究中已有许多成功实例生物领域:贝尔实验室的Svoboda等人研究了大脑皮层神经元细胞内钙离子动力学情形。利用双光子显微镜观察到的现象证明了钙离子的增加依赖于肌体触发的钠离子作用电势。信息领域:美国科学家Rentzepis提出了一种在现有二维光盘的基础上将数据储存扩展到三维空间。由于双光子激发具有作用精细体积小的特点,避免了层与层之间的互相干扰,极大地提高了数据储存密度。双光子显微镜还可以对一些具有特性的染料细胞进行实验,还有一些短波长可以利用双光子特性进行特定实验。进口bruker双光子显微镜用途
双光子显微镜(2PM)可以对钙离子传感器和谷氨酸传感器进行亚细胞分辨率的成像,从而测量不透明脑深部的活动。成像膜的电压变化可以直接反映神经元的活动,但神经元活动的速度对于常规的2PM来说太快了。目前,电压成像主要由宽视场显微镜实现,但其空间分辨率较差,且只能在浅深度成像。因此,为了以高空间分辨率成像不透明脑中膜电压的变化,需要将成像速率提高2PM。面向模块输出端的子脉冲序列可视为从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成空间分离和时间延迟的聚焦阵列。然后,该模块被集成到一个带有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是重复频率为1MHz的920nm激光器。FACED模块可以产生80个脉冲焦点,脉冲时间间隔为2ns。这些焦点是虚拟源的图像。虚光源越远,物镜处的光束尺寸越大,焦点越小。光束可以沿Y轴比沿X轴更好地填充物镜,从而在X轴上产生0.82m和0.35m的横向分辨率。国内ultimainvestigator双光子显微镜供应商在深度组织中以较长时间对细胞成像,双光子显微镜是当前之选。
新一代微型化双光子荧光显微镜体积小,重只2.2克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划重要团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统实现了微型双光子显微镜对脑科学领域较广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精细地操控神经元和神经回路的活动。
为了验证动物生物样品的时间分辨成像能力,本实验观察了活海拉细胞高尔基体中的青色荧光蛋白mTFP1,见图3(a),(c)-(i)。使用的物镜及尺寸与荧光颗粒成像一致,对比可见v2PE在空间分辨率、激发深度级图像对比度较常规宽场显微镜都有所提高。此外,v2PE可以同时激发多个波长的荧光蛋白,这种技术还可以应用于细胞内分子的三维动力学多色成像。在此基础上,实验对海拉细胞中的高尔基体(mTFP1)和纤颤蛋白(EGFP)进行了在体成像,见图3(j)-(n),青色为mTFP1,绿色为EGFP,实验中两种荧光蛋白同时成像,终采用光谱分离法将不同蛋白的荧光信号分离出来。双光子显微镜能够进行光裂解、光转染和光损伤等光学操纵。
WinfriedDenk使用的第1个光源是染料飞秒激光(脉冲宽度100fs,可见光波长630nm)。染料激光虽然实验室演示可以接受,但是使用起来不方便,所以离商业化还很远。很快双光子显微镜的标准光源变成了飞秒钛宝石激光器。钛宝石激光器除了具有固态光源的优点外,还具有近红外波长调谐范围宽,而近红外比可见光穿透更深,对生物样品的损伤更小。下图是Thorlabs的双光子和三光子显微镜配置,钛宝石飞秒可调谐激光器位于平台左侧。从双光子到三光子科学家们正在从双光子显微镜转向三光子显微镜。1996年,ChrisXu在康奈尔大学(Denk的导师实验室)读博时发明了三光子显微镜。如果双光子吸收是可行的,那么三光子似乎是自然的发展方向。三光子成像使用更长的波长,大约1.3和1.7微米,成像深度比双光子更深。目前录音大约2.2毫米,人的大脑皮层厚度大约4毫米。与双光子显微镜相比,三光子需要使用更强、更短、重复率更低的激光脉冲,这是传统的钛宝石激光器很难满足的,但对于掺镱光纤飞秒光参量放大器,比如我们的Y-Fi光参量放大器(OPA)就非常容易。双光子显微镜可以用于局部微蚀镭射磨皮后的胶原重塑的检测。双光子显微镜的成像视野
双光子显微镜使用高能量锁模脉冲器。进口bruker双光子显微镜用途
双光子显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双(多)光子成像优势在于,具有更深的组织穿透深度,利用红外光,能够在层面检测极限达1mm的组织区域;因信号背景比高,而具有更高的对比度;因激发体积小,具有定点激发的特性,具有更少的光毒性;激发波长由紫外、可见光调整为红外激发,能够更加安全。进口bruker双光子显微镜用途
文章来源地址: http://yiqiyibiao.chanpin818.com/gxyq/xwj/deta_21896574.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。