纵观纳米测量技术发展的历程,它的研究主要向两个方向发展:一是在传统的测量方法基础上,应用先进的测试仪器解决应用物理和微细加工中的纳米测量问题,分析各种测试技术,提出改进的措施或新的测试方法;二是发展建立在新概念基础上的测量技术,利用微观物理、量子物理中较新的研究成果,将其应用于测量系统中,它将成为未来纳米测量的发展趋向。但纳米测量中也存在一些问题限制了它的发展。建立相应的纳米测量环境一直是实现纳米测量亟待解决的问题之一,而且在不同的测量方法中需要的纳米测量环境也是不同的。纳米力学测试应用于半导体、生物医学、能源等多个领域,具有普遍前景。纳米力学动态测试原理
纳米压痕技术通过测量压针的压入深度,根据特定形状压针压入深度与接触面积的关系推算出压针与被测样品之间的接触面积。因此,纳米压痕也被称为深度识别压痕(depth-sensing indentation,DSI) 技术。纳米压痕技术的应用范围非常普遍,可以用于金属、陶瓷、聚合物、生物材料、薄膜等绝大多数样品的测试。纳米压痕相关仪器的操作和使用也非常方便,加载过程既可以通过载荷控制,也可以通过位移控制,并且只需测量压针压入样品过程中的载荷位移曲线,结合恰当的力学模型就可以获得样品的力学信息。广州高校纳米力学测试设备纳米力学测试可以用于评估纳米材料的耐久性和寿命,为产品的设计和使用提供参考依据。
日本:S.Yoshida主持的Yoshida纳米机械项目主要进行以下二个方面的研究:⑴.利用改制的扫描隧道显微镜进行微形貌测量,已成功的应用于石墨表面和生物样本的纳米级测量;⑵.利用激光干涉仪测距,在激光干涉仪中其开发的双波长法限制了空气湍流造成的误差影响;其实验装置具有1n m的测量控制精度。日本国家计量研究所(NRLM)研制了一套由稳频塞曼激光光源、四光束偏振迈克尔干涉仪和数据分析电子系统组成的新型干涉仪,该所精密测量已涉及一些基本常数的决定这一类的研究,如硅晶格间距、磁通量等,其扫描微动系统主要采用基于柔性铰链机构的微动工作台。
主要的微纳米力学测量技术:1、微纳米压痕测试技术,1.1压入测试技术,压人测试技术是较初的是表征各种材料力学性能较常用的方法之一,可以追溯到 20 世纪初的定量硬度测试方法。传统的压人测试技术是利用已知几何形状的硬压头以预设的压人深度或者载荷作用到较软的样品表面,通过测量残余压痕的尺寸计算相关的硬度指数。但压入测试技术的缺陷在所能够表征的材料力学参量局限于硬度和弹性模量这2个基本的参量。1.2 微纳米压痕测试,近年来新型材料正在向低维化、功能化与复合化方向飞速发展,在微纳米尺度作用区域上开展微纳米压痕测试已被普遍用作评价材料因微观结构变化面诱发力学性能变化以及获得材料物性转变等新现象、新规律的重要工具。所能够表征的材料力学参量也不再局限于硬度和弹性模量这2个基本的参量。纳米力学测试可以解决纳米材料在微纳尺度下的力学问题,为纳米器件的设计和制造提供支持。
纳米力学从研究的手段上可分为纳观计算力学和纳米实验力学。纳米计算力学包括量子力学计算方法、分子动力学计算和跨层次计算等不同类型的数值模拟方法。纳米实验力学则有两层含义:一是以纳米层次的分辨率来测量力学场,即所谓的材料纳观实验力学;二是对特征尺度为1-100nm之间的微细结构进行的实验力学研究,即所谓的纳米材料实验力学。纳米实验力学研究有两种途径:一是对常规的硬度测试技术、云纹法等宏观力学测试技术进行改造,使它们能适应纳米力学测量的需要;另一类是创造如原子力显微镜、摩擦力显微镜等新的纳米力学测量技术建立新原理、新方法。纳米力学测试需要使用专属的纳米力学测试仪器,如纳米压痕仪和纳米拉伸仪等。广东半导体纳米力学测试厂家直销
纳米力学测试结果有助于优化材料设计,提升产品性能,降低生产成本。纳米力学动态测试原理
应用举例:纳米纤维拉伸测试,纳米力学测试单轴拉伸测试是纳米纤维定量力学分析较常见的方法。用Pt-EBID将纳米纤维两端分别固定在FT-S微力传感探针和样品架上,拉伸直至断裂。从应力-应变曲线计算得到混合纳米纤维的平均屈服/极限拉伸强度为375MPa/706Mpa,金纳米纤维的平均屈服/极限拉伸强度为451MPa/741Mpa。对单根纳米纤维进行各种机械性能的定量测试需要通用性极高的仪器。这类设备必须能进行纳米机器人制样和力学测试。并且由于纳米纤维轴向形变(延长)小,高位移分辨率和优异的位置稳定性(位置漂移小)对于精确一定测量是至关重要的。纳米力学动态测试原理
文章来源地址: http://yiqiyibiao.chanpin818.com/dzclyq/yjcsy/deta_24273704.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。